Теорема Виета

Теорема 1 (теорема Франсуа Виета). Пусть x_1 , x_2 – корни квадратного трёхчлена $x^2 + bx + c$. Тогда справедливы формулы Виета: $x_1 + x_2 = -b$, $x_1x_2 = c$.

Теорема 2 (обратная теорема Виета). Пусть для чисел x_1 и x_2 выполнены соотношения $x_1 + x_2 = -b$, $x_1x_2 = c$. Тогда x_1 и x_2 являются корнями квадратного трёхчлена $x^2 + bx + c$.

Теорему Виета и обратную к ней можно сформулировать и для многочленов третьей и более высоких степеней.

Теорема 3. Пусть x_1, x_2, \ldots, x_n – корни многочлена n-й степени $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n$. Тогда справедливы формулы Виета:

$$\begin{cases} x_1 + x_2 + \dots + x_n = -\frac{a_1}{a_0}, \\ x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n = \frac{a_2}{a_0}, \\ x_1 x_2 x_3 + x_1 x_2 x_4 + \dots + x_{n-2} x_{n-1} x_n = -\frac{a_3}{a_0}, \\ \dots \\ x_1 x_2 x_3 \dots x_n = (-1)^n \frac{a_n}{a_0}. \end{cases}$$

$$(1)$$

(левая часть k-го равенства представляет собой сумму всевозможных произведений, состоящих из k различных элементов из набора $\{x_1, x_2, \ldots, x_n\}$; знаки в правой части чередуются).

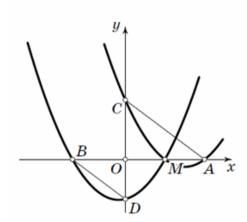
Теорема 3 допускает обращение.

Теорема 4. Пусть числа x_1, x_2, \ldots, x_n удовлетворяют соотношениям (1). Тогда они являются корнями многочлена $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \ldots + a_{n-1}x + a_n$.

Комментарий. Если многочлен имеет кратные корни, то каждый корень считается в теореме Виета столько раз, какова его кратность.

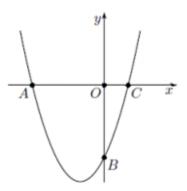
- 1. Докажите теоремы 1 и 2.
- 2. Сформулируйте теорему Виета для квадратного трёхчлена, который не является приведенным.
- 3. Напишите приведённое квадратное уравнение, корнями которого являются числа 18 и -4.
- 4. Пусть квадратный трёхчлен $x^2 + px + q$ имеет два корня (различных или совпадающих). Докажите, что тогда:
 - 1) оба этих корня положительны тогда и только тогда, когда p < 0, q > 0;
 - 2) оба этих корня отрицательны тогда и только тогда, когда p > 0, q > 0.
- 5. При каких значениях параметра p уравнение $x^2 2(p+1)x + 9p 5 = 0$ имеет два различных положительных корня?
- 6. Пусть $x_1,\,x_2$ корни уравнения $2x^2+5x-1$. Не вычисляя их, найдите: а) $x_1x_2^2+x_1^2x_2$; б) $x_1^2+x_2^2$; в) $x_1^3+x_2^3$; г) $\frac{x_1}{x_2}+\frac{x_2}{x_1}$; д) $\frac{1}{x_1^2}+\frac{1}{x_2^2}$; е) $\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}$.
- 7. Сумма квадратов корней уравнения $x^2 2x + a = 0$ равна 16. Найдите a.
- 8. Определите p, если сумма кубов корней уравнения $2x^2 8x + p = 0$ равна 34.

- 9. Корни уравнения $x^2 + px + q = 0$ являются целыми числами. Найдите эти корни, если p + q = 198.
- 10. Определите b, если известно, что один из корней уравнения $4x^2 15x + b = 0$ является квадратом другого.
- 11. Найдите все такие значения a, при которых уравнение $x^2 + ax + 6 = 0$ имеет два корня, которые являются a) целыми числами; b0 целыми положительными числами.
- 12. При каких значениях параметра a уравнение $(a-2)x^2 + 2(a+2)x + a + 3 = 0$ имеет два различных положительных корня?
- 13. Уравнения $x^2 5x + a = 0$ и $x^2 7x + 3a 6 = 0$ имеют по два корня, и корни первого уравнения на 1 меньше корней второго уравнения. Найдите a.
- 14. Докажите, что не существует двух дробей, не являющихся целыми числами, у которых сумма и произведение были бы целыми числами.
- 15. Найдите сумму $x_1^2 + x_2^2 + x_3^2$, где x_1, x_2, x_3 корни уравнения $x^3 + px^2 + qx + r = 0$.
- 16. Многочлен $x^3 + ax^2 x + b$ имеет три корня: x_1, x_2, x_3 . Известно, что $x_1 = -1, x_2 = 4$. Найдите x_3 (значения a и b неизвестны).
- 17. Корни многочлена $t^2 + at + b + 1$ натуральные числа. Докажите, что $a^2 + b^2$ составное число.
- 18. Найдите произведение корней квадратных уравнений $ax^2 + bx + c = 0$ и $cx^2 + bx + 2016a = 0$.
- 19. Даны два приведённых квадратных трёхчлена. График одного из них пересекает ось Ox в точках A и M, а ось Oy в точке C. График другого пересекает ось Ox в точках B и M, а ось Oy в точке D. (O начало координат; точки расположены как на рисунке.) Докажите, что треугольники AOC и BOD подобны.



- 20. Прямая пересекает график функции $y=x^2$ в точках с абсциссами x_1 и x_2 , а ось абсцисс в точке с абсциссой x_3 . Докажите, что $\frac{1}{x_1}+\frac{1}{x_2}=\frac{1}{x_3}$.
- 21. Алёша написал на доске пять целых чисел коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, -5. Восстановите стёртое число.

- 22. При каких p и q уравнению $x^2 + px + q = 0$ удовлетворяют два различных числа 2p и p + q?
- 23. Квадратный трёхчлен $f(x) = ax^2 + bx + c$ принимает в точках 1/a и c значения разных знаков. Докажите, что корни трёхчлена f(x) имеют разные знаки.
- 24. Известно, что корни уравнения $x^2 + px + q = 0$ целые числа, а p и q простые числа. Найдите p и q.
- 25. У квадратного уравнения $x^2 + px + q = 0$ коэффициенты p и q увеличили на единицу. Эту операцию повторили четыре раза. Приведите пример такого исходного уравнения, что у каждого из пяти полученных уравнений корни были бы целыми числами.
- 26. Парабола $y = ax^2 + bx + c$ пересекает ось Ox в точках A и B, а ось Oy в точке C, не совпадающей с началом координат. Найдите площадь треугольника ABC (ответ должен быть выражен через величины a, b, c).
- 27. На приведенном ниже рисунке изображена парабола $y=x^2+2015x+b$. Известно, что прямые AB и y=x перпендикулярны. Найдите корни квадратного уравнения $x^2+2015x+b=0$.



- 28. Квадратное уравнение $x^2 + bx + c = 0$ имеет два действительных корня. Каждый из трех его коэффициентов (включая коэффициент при x^2) увеличили на 1. Могло ли оказаться, что оба корня трехчлена также увеличились на 1?
- 29. На доске нарисован график функции $y=\frac{k}{x}, k\neq 0$ и 2013 прямых параллельных прямой y=kx. Найдите произведение абсцисс всех точек пересечения графиков данных функций.
- 30. На плоскости из начала координат в положительном направлении оси абсцисс проведены два луча принадлежащих прямым y = x и y = 2015x, соответственно. Упомянутые лучи отсекают от параболы $y = x^2 + px + q$ две дуги. Дуги спроектированы на ось Ox. Найдите модуль разности длин проекций этих дуг.